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Canonical perturbative approach to nonlinear systems with application to optical waves
in layered Kerr media
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We investigate electromagnetic wave reflection and propagation in layered Kerr structures by introducing a
method based on the application of canonical perturbation theory to fields in nonlinear media. Via the
Hamilton-Jacobi formalism of classical mechanics, the waves in linear layers are expressed with constant
canonical variables. The nonlinearity is treated as a small perturbation that modifies the constant invariants. We
explicitly evaluate the nonlinear fields correct to first order by perturbation and compare the results to a
rigorous nonlinear thin-layer model. Both polarizations, TE and TM, are considered separately. An exact
quadrature solution of the nonlinear field in TM polarization is derived. We show that with weak nonlinearities
the perturbative technique yields simple and accurate analytical expressions for the nonlinear fields. The results
give physical insight into the use of nonlinear media for controlling the scattered fields in layered structures.

PACS numbe(s): 42.65.Tg, 46.05tb, 78.20.Bh

[. INTRODUCTION bation method is based on the inverse scattering thiedtly
We take a new approach to the perturbative nonlinear
Nonlinear equations of evolution are frequently encountheories. We investigate layered structures that include non-
tered in optics[1,2]. They occur as a consequence of thelinear Kerr media. For simplicity, we consider a system of
interaction of intense laser light with matter. An especiallythree dielectric layers in which the middle layer is taken to
important nonlinear phenomenon is the Kerr effect in whichPe @ Kerr medium. This geometry is common in optoelec-
the refractive index of the medium depends linearly on théronic system$13] and it describes, for example, a nonlinear
electric-field intensity. Optical bistabilit}3] and particlelike ~ Mirror or waveguide. We calculate the nonlinear electric and
solutions, solitong4], have many potential applications in magnetlc fields perturbatively using the_ canon[cal Ham|l-
optical communicatior{5] and optoelectronic device]. ton’s theory[14,15. To our knowledge this technique is an

Depending on the polarization of the incident wave the Kerr_altogether new application of cla_ssical mec_hanics in optics.
Maxwell equations reduce to two different nonlinear equa—':rom the Hamilton-Jacobi equatigd4] we find the exact

tions; in TE polarization they take on a relatively simple linear electromagnetic soluti(_)n in terms of canon.ical \_/ari.—
’ . . o ables that are constants of integration. The nonlinearity is
.fo”‘.‘ of a ”°”"r.‘ear Helmholtz equatlorl, wh!le n TM.poIar- treated as a small perturbation that modifies the constant in-
ization the r_pnllnearlty couples to the flgl_ds ina con&derablx,ariams_ With weak nonlinearities this assumption is physi-
more nontrivial manner. In some specific cases exact wavg,)y jystified. We establish the first-order corrections by ex-
solutions can be found, but usually most theoretical considpicit calculations and assess the accuracy of the results using
erations are based on approximate techniques. If the nonlifpe rigorous nonlinear thin-layer theofg6]. Both TE and
earity is sufficiently weak the results are expected to beryp polarizations are considered separately. An exact
nearly exact. quadrature solution of the TM-polarized nonlinear field is
The electromagnetic field propagation is conventionallyalso derived. We show that the perturbative approach leads
analyzed in layered and stratified structures. The fabricatiofo accurate analytical solutions for the nonlinear fields. Our
of such multilayered elements is technically possible, and foresults give analytical insight into the nonlinear wave behav-
instance, optical bistability by excitation of a nonlinearior and demonstrate, for example, that in layered structures
guided wave is readily observed in experimeft§ From  the nonlinearity can be used to manipulate the scattered
the theoretical point of view layered media simplify the field fields.
equations and some nonlinear systems become analytically This paper is organized as follows. In Sec. Il we introduce
soluble[8]. The (non)linear electromagnetic fields are usu- the model and the main nonlinear equations for both polar-
ally represented by plane wav@8]. This involves an ap- izations. In Sec. lll we apply Hamilton’s canonical perturba-
proximation that the field-envelope variation occurs slowly,tion theory to the fields in a Kerr medium and find the first-
over distances much larger than an optical wavelehth order solutions. In Sec. IV we briefly describe the nonlinear
However, in many situations the nonlinear equations arehin-layer theory. The numerical results are presented and
solved using perturbative techniques. There exist two maimliscussed in Sec. V. Finally, in Sec. VI we summarize the
practices: either these equations are linearized by expandingain conclusions.
the solutions about the unperturbed oh&s|, or the pertur-

II. NONLINEAR MODEL

*Electronic address: timo.laine@optics.kth.se Layered geometries are elementary structures that are fre-
Electronic address: ari.friberg@optics.kth.se quently employed in optical systems. The applications in-
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where the effective index of refractiom satisfies the Kerr
law,

n(yiz):n0+n2|E(yiz)|2' (2)

Here|E(y,z)|? is the optical intensityE|>=EE*, n, is the
refractive index of the linear medium, and is a small real
coefficient that describes the strength of the nonlinearity. For
simplicity, we use scaled forms of the coordinates, ie.,
—Yylkg and z—z/ky, wherekqg=w/c andc is the speed of
light in vacuum.

Especially, we want to study systems for which the fields
vary as plane waves along thecoordinate, i.e.E(y,z)
=E(2)€*v, wherek,=n’sind is the wave vectofin units

FIG. 1. Layered geometry of the nonlinear model. The angle ofof k) in y direction. The refractive indexr then becomes a
incidence isf, n’=n" andn are the refractive indices of the linear fynction of z only, n(y,zZ)=n(z), and Eq.(1) assumes the

and nonlinear media, respectively. form
clude planar waveguides, optical switches, sensors, etc. 2 )
When the medium contains nonlinearities, the investigations E+CIE+C2|E| E=0, 3

of the rigorous electromagnetic solutions become effectively
more complex. The exact expressi¢Bsusually also are too 5 o
complicated to be of value in practical applications. wherec,; =ng—kj andc,=2ngn,. We call Eq.(3) the TE-

We take an alternative approach to the exact nonlineap®larized Kerr-Maxwell equation, and it is one of the non-
theories. We aim to find simple but accurate analytical formd!"€ar equations that we solve perturbatively. In the sections
for the nonlinear fields. We first introduce the model em- elow E denotes the reduced one-dimensional fiekd,
ployed in this paper and present the nonlinear field equations E(2).
whose perturbative solutions within the Hamiltonian formal-
ism are examined in Sec. Ill. Both polarizations, TE and TM, C. TM polarization

are considered separately. In the case of TM polarization the magnetic fiekd
=H(y,z) is perpendicular to the plane of incidence. Field
satisfies the two-dimensional nonlinear Maxwell equation

A. Geometry
The nonlinear system is illustrated in Fig. 1. For simplic- i(iﬁ) i lﬁ) +H=0 (4)
ity, we have taken it to consist of three dielectric layers only. dy\e dy| dz\e 9z '

The indices of refraction are denoted by, n, andn”. The
middle layer is assumed to be a Kerr medium, while thewheree(y,z)=n?(y,z) is the electric permittivity of the me-
other two layers are linear amd=n’. An incident wave of  dium. The Kerr law can now be written in the form
frequencyw propagates at an angketo the normal of the
structure. If the middle layer is linear and its thickness is e(y,2)=eo+ &|E(y,2)|?, (5)
properly chosen, one may obtain a situation in which all light
traverses the structure and the reflected intensity is zero.
We study the effects of the nonlinearity to the scattere
fields. This is an interesting and important application of
layered structures. Within the middle layer the waves satisfy

here eo=n§, €,=2ngN,, and the intensity is determined
rom the formula

2 2

two different nonlinear equations depending on the state of |E(y,2)|2= ToH, 1tH _ (6)
polarization of the incident light. In our approach, we solve € dy € 0z
these nonlinear propagation equations perturbatively using
Hamilton’s canonical theorySec. Il). When the magnetic field is taken as a product of two func-
tions,
B. TE polarization "
= ikyy
For a TE-polarizeds) wave the electric field is perpen- H(y,2)=H(z)e™", @)
dicular to the plane of incidence. By starting from Maxwell's
equations(in Gaussian units with unit magnetic permeabil- Ed. (4) reduces to
ity), one may derive a nonlinear equation for the electric field
AW 2
E=E(y,2), H Ky
- =\ ~1/H, (8)
PE PE
—+—+n°E=0, (1)

ay?  9z? and the intensity in Eq(6) takes on the form
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2 where, as before, the prime denotes differentiation with re-
) spect toz. As in conventional classical mechanics, we may
define two pairs of canonical variables

H
€

|E(2)]?=K]

The prime indicates differentiation with respectztaVe call

Egs. (5) and (8), together with intensity(9), the TM- (e,p) and (¢,pc), (12
polarized Kerr-Maxwell equation. This is the second nonlin-
ear equation to which we apply the canonical perturbatiorYV
theory. Throughout in the sections that folloi,denotes the
reduced field that depends aronly.

here the conjugate momenta are derived from the Lagrang-

aL JL )
p=—=2¢", p;=——"=2¢'c". (13
11l. CANONICAL THEORY de’ de’

We calculate the nonlinear electromagnetic field configu—rha Hamiltonian is now found by applying the Legendre
ration perturbatively using the canonical thepty,15. This . nsformation to Lagrangiafi 1)
is manifestly a new approach to apply classical mechanics in '

optics. Hamilton’s theory has been employed earlier in quite

different contexts, for example, in electron opti@§] and in , ) p? pg , C2 4,
variational calculug18]. In our approach, we make use of Huwa(e,P.Pe)=e'P+ ¢ pe—L="7-+ E+Cls +toen
the Hamilton-Jacobi theory and solve the linear optical sys- (14)

tem exactly in canonical variables that are constants of inte-

gration. When the nonlinearity is sufficiently weak, it may be the right-hand side resembles classical systems with a qua-
treated as a small perturbation that disturbs the linear systerg,4tic momentunp? and with potentialss? and 2. How-
In most materials this is a physically reasonable assumptlorbver’ the second termp(/e)? is rather specific because it

The canonical perturbation theory is used to compute thgioes not have a counterpart among the conventional systems

corrections to the constant invariants. Since the canonicgjs cjassical mechanics. In optics, the origin of this term can
theory is simpler and more directly illustrated with TE po- g traced to the phase factor of complex figld

larization, we discuss this situation first. The application 10 The total Hamiltonian can be divided into two parts:

TM fields is examined in Sec. IIl A. Hiw=Ho+H;. HereH, is the Hamiltonian of the linear
system €,=0)
A. TE polarization

We commence by showing the relation between classical p? pg 5
mechanics and optics. We introduce a Lagrangian that de- Hozz +P+018 =Eo, (15
scribes the present one-dimensional optical system and per- e
form a Legendre transformation leading to Hamilton's
theory. We determine the exact solution of the linear systerr‘?l
in terms of constants of integration, and subsequently apply
the canonical perturbation theory to the nonlinear interaction. C2 ,
As is known from the calculus of variations, optical sys- Hi=>e" (16)
tems can be described within the Lagrangian formalism. We

consider the following Lagrangian ConstantE, represents the “energy” of the linear system. It
2 c is assumed that the solution corresponding to #§) does
—c |E|2——2|E|4 (10) not vanish at the boundaries of a layered structure, from
1 2 ’ . . L.
which it follows thatE, must be(positive) nonzero.
Let us next determine the analytical form of the electric

whereE=E(2) is the complex-valued field, antj andc, field of the linear systenid,. The customary solution con-
are constant coefficients. The Euler-Lagrange equation fo#iSts Of two counterpropagating plane waves. In our approach
E* then reproduces the nonlinear TE polarized Kerr-We write the same analytical solution using canonical vari-
Maxwell equation, Eq(3). Hence the Lagrangiafl0) in-  ables that are constants of integration, i.e., independent of
cludes all the physics needed to describe a nonlinear TEhis specific form of the solution makes it possible to apply
polarized system. the canonical perturbation theory to the nonlinear péyt
Our interest is to find a Hamiltonian that corresponds to(Perturbatiop. When the nonlinearity is weak, the changes to
Eq. (10). Thus we express the complex electric field with the linear theory are expected to be small. The theoretical

nd the influence of the nonlinearity is described by

_|E
oz

two real functions e(z) and ¢(z), ie., E(2) background of the canonical theory is based on the
=e(2)exdie(2)]. The Lagrangian of Eq(10) transforms Hamilton-Jacobi equation, which describes the canonical
into transformation to constant variablgs4,15. When solving

the Hamilton-Jacobi equation, we simultaneously get an ex-
act analytical solution to the linear problem.
(11) What are the constants of integration? The Lagrangian of

Co
— ’ 1y — /2+ 12.2__ 2__"¢_4 . X s
L=L(e,s",p")=e""+t @' e~ Cye e Eq. (11) (with c,=0) does not include the generalized coor-

2
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dinatee and so the corresponding momentppalready isa  Carrying out the integration with respect ¢oyields
conserved quantity. If the Euler-Lagrange equation is formed

for ¢, the result is

dfoL) d
dz &cp “dzPe”

This shows thap. indeed is a constant with respectzo

7

We now use the Hamilton-Jacobi theory to transform th

canonical pair p,e) to variables that are constanta,(3).

With the help of Eq(15) we form the Hamilton-Jacobi equa-

tion for S (Hamilton’s principal function[14],

R PLC 2+(98—0 18
4\os) T ae2 T 92T (18)

The solution to Eq(18) is found in the form
S(e,a,2)=W(e,a)— az, (19

whereW(e, @) is Hamilton's characteristic function andis
a constant. EquatiofiL9) is substituted into Eq(18), result-
ing in

L[oW 2+ P + 20
1070 Pt 20
Constante may thus be identified with enerdy,, i.e.,

SinceH, is not an explicit function of, energyE, (and thus
a) is one constant of integration. On solving EQ0) with
respect taw,

pa/(4e?)+c
W= 2J—fds\/1— 8) 18,

we find thatSin Eq. (19) becomes

(22

p2/(
S= zJ_fds\/r— 48)+Cﬁ T ez (29

z+B=

1 2ce?—a
arcsi (25

2Ve,  [Va?—pley]

On inverting Eq(25) we find an expression for the envelope

eof the electric field

1/2
=Zicl{wJaz—piclsirtwc_l(zﬂs)]}} . (26

The complete electric-field solution includes also the phase
factor ¢. From Egs.(13) and(26) we obtain

pcf 1 —1 a
=—| —dz=tan tarf yc{(z+
2 82 pc\/C—l r[ 1( ﬂ)]
1 [a?—plc,
+—\/———— |+ ¢q, 2
Pe c, ®o (27)

wheregg is a constant. We note that— ¢, may be positive
or negative depending on the signmf (energya is always
positive.

The field momentunp, which is canonical pair te, is
obtained in a similar way from Eq§19), (20), and(26). The
result is

IS IW p2 )
P=5e = s “« 42 e

(a®—c1p2)cos[2\cy(z+B)]
= 28
\/—\/a—l- o —ClpCSIr[Z\/—(Z+,3)] 29

One may verify that envelop@6) and momentun{28) in-
deed satisfy the Hamiltonian of the linear system, &d).
Hence we conclude that by using the Jacobi-Hamilton theory

One could perform the integration, but that is not required tqQye have found an exact solution for the electric fietg (

solve the Hamilton-Jacobi equation.

The third constant of integratio, is obtained by differ-
entiating Hamilton’s principal function with respect te,
ie.,

1
=—=_"_"14d _
da \/; 8\/l—(p§/(482)-I—Clsz)/a

(24)

=0) in terms of constants of integratian B, andp..

Once the rigorous solution is known, we may determine
all unknown quantities of the linear system in terms of con-
stants of integration. For example, the Lagrangian of Eq.
(11) assumes the form

L=— Ja?—c,pZsin2yc,(z+B)],

(29
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and Hamilton’s principal functiots becomes
S(a,,B,pc)=f Ldz+const

1

24c;

Va?—c,p2cog 2 /c,(z+ B)]+ const.
(30

In both equations we have used the conditigr0.

T. A. LAINE AND A. T. FRIBERG
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These equations are integrated ozeesulting in
- —_— 3&0
1= Qg and B1=B0+ Czyz (36)
c

1

We observe that the Kerr-type nonlinearity does not change
the “energy” of the system &) to first order.

According to our perturbative method the form of the
electric field[Egs.(26) and(27)] remains unchanged but the
constants of integration are modified by the interaction. On

We are now in a position to apply the canonical perturbausing Eq.(36) the electric fieldE(z) =& (z)exdie(2)], cor-

tion theory to the nonlinear pak,. The canonical property

rect to first order by perturbation due ta\®eak nonlinear-

of a given coordinate transformation is independent of thdty, thus is

particular form of the Hamiltonian. Therefore the transfor-

mation (p,e)— («,B) generated bys(e,a,z) remains a ca-
nonical transformation for the perturbed systgtd]. Only
now the new Hamiltonia ., will no longer be constant
with respect toa and 8. The equations of motion for the
transformed variables are

(31)

WhenH; is taken according to its definition, Eq&.6) and
(26), one obtains

a/:_& a2_clp§c05{2\/c—1(z+ﬂ)]82 (32
Ve,
and
, Co asin 2\c(z+B)] 2
B — ZCl + a,Z_C_zlpc €. (33)

Generally, both “constants’a and g8 will depend on the
field intensity |[E|?=¢2

optics, only the first corrections @, and B3, are important,
where the subscripts denote the constant unpertutivezirn
values ofa and .

Hence, as a final result, we determine the first-order cor-

rections toa and 8. They are immediately obtained from
expression$32) and(33) via a direct substitution of the lin-
ear valuesay and By on the right-hand sides, i.eq;

in the perturbed system. However,
when the nonlinearity is weak, as is normally the case i

1
8(2)212—(:1

z+

ao
tan \/c,
P r{ ’

+i ag_pgcl N
eV o

1

ﬁ n 36!0
Co—=2Z
0 28C%

(37b)

<p(z)=tan1<

where the four constantsy, B, pP., ande, are determined
from boundary conditions, as usual. Equatiai3ga and
(37b) are one of the main results of this paper. The nonlin-
earity alters the period of the oscillatory motion but leaves
the strength of the intensity unchanged. The corresponding
linear result is recovered in the limit,— 0. When the non-
linearity is increased it is reasonable to assume that the in-
teractions couple also to the “field energy” ang is modi-
fied. In this situation one could integrate E¢32) and(33)

r(or an exact result or calculate more corrections for the ex-

pansion by perturbation. The latter is accomplished by sub-
stituting the values of Eq(36) onto the right-hand sides of
Egs.(32) and(33) and repeating the procedure above.

The analytical results, Eq$37), are numerically verified

in Sec. V using the exact nonlinear thin-layer theory devel-
oped for planar structures with Kerr nonlinearities. The ef-
fects of changes in the parameters of the nonlinear medium
are also assessed.

=a'|p andB; = B’|,. However, these forms of the solutions
are not particularly convenient because of the rapid oscilla-
tory motions. It is customary to calculate a net value. For a
d-periodic functiong(z) =g(z+d), the average value is de-
fined as

B. TM polarization

The use of canonical perturbation theory with TE-
polarized fields is rather straightforward, mainly because the
Lagrangian(10) has a simple form. In the case of TM polar-
ization, the corresponding Lagrangian is more involved and
one is advised to consider a different approach. We use the
following idea: we express the exact quadrature solution of

From Egs.(32) and (33) we may identify the period to be the TM-polarized Kerr-Maxwell equation in terms of the

d=m/\/c,. Hence the secular perturbation at a constant ratglectric field and find its relation to the theory of TE-
is given by polarized waves. Both theories, TE and TM, are mathemati-

cally equivalent at normal incidence. On expanding the fields
in Taylor series at a small angle one gets the nonlinear inter-
actions that characterize the electric field of TM-polarized

waves, and a perturbative solution up to first order is found.

_ 1(d
g= afo g(z)dz (34

36!0 (35)
8c?’

a;=0 and Bi=c,
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In this technique, some additional assumptions are madsatructure k,=0), one can show from Maxwell's equations
hence the final result is expected to be slightly less accuramatE:Ey=ie‘1(9H/az. Thus the boundary conditior46)

than that in TE polarization. and (47) transform as
A general form of the exact quadrature solution of the
TM-polarized nonlinear Maxwell equation is given in Ap- JEq JE,
pendix A[Eg. (A13)]. When the nonlinear layer is taken to oz | T ozl (48)
be a Kerr medium, the solution for the magnetic-field enve- z %
lope becomes$from Eqgs.(A2), (A13a), (Al14), and(A15)],
El|20: E2|20- (49)
2 €
h _2k2_6[6| I+ Col, (38) In the former equality we also used the nonlinear Maxwell
Y equation(4). Equations(48) and (49) are recognized as the
whereC, is constant and usual boundary conditions for TE-polarized waves. Thus we
have shown that Eq45), together with Eqs(48) and (49),
h?=|H|?, (39  relates the TE and TM polarizations; the mathematical for-
malism is the same for both polarizations when the field is
e=e€o+ €| E|?, (40 normally incident.
We investigate a more general situation in which the in-
e— € 5 cident wave propagates at an angle to the normal of the
I= . =[E[%, (41)  structure k,+0). The mutual interactions of the fields make

the general solution of E¢43) complicated. We assume that

(e €0)? - |E|* wn ky is a small parameter and E@4) can be taken as

262 2 ' |E,|2%|H|2 (50)

Using the notations above, solutig®8) can be rewritten as This is an additional approximation to keep the problem

e|E[* soluble. From a physical point of view, the assumption ne-
(e0+ €|E[D)|E|2— 2 glects the angular dependence in the kinetic part of the La-
2 grangian, i.e., nonzerk, modifies only the nonlinear poten-
tial. The boundary conditions, Eq&8) and (49), are also
_ (43) taken to remain approximatively valid for smad}. In the
numerical example in Sec. V we will justify the validity of
these assumptions.
The onIy term that involves field is on the left-hand side of Using Eq(50) and a Sma|ky condition we Systematica”y
Eq. (43). We would like to replace it by some combination of expand Eq(43) in a Taylor series with respect . To first
field E and its derivative. By using the TM-polarized Max- grder the result is
well equations and Ed7) we obtain

IH|2= ot €| E|?
2k32/—(60+62|E|2)

+C,

€x( eg — 660k§)

2
k2 2 H\’ 2 ) €0 2 4
e | [ %y _ o|(H |E'[*+ [E[*+ |E|
E'] —‘( - TLH] tky E) , (44) €9—2k? 2(eo—2K3)?
2
where|E’|? is defined in accordance with E¢6). We ob- " Ca o €22K, IE2|=0 (51)
serve that iﬂ<§=0, Eqgs.(43) and(44) reduce to 50—2k§ 0 50—2k§ '
/ €2 All fields are in quadratic forms, so we may directly use the
E'|2+ | E|2+ = |E|*= - C,. 45 ( qua ’ ay Y
[E'[*+ &l 2 €] 2 49 canonical perturbation theory developed in Sec. Il A.

We sete,=0 in Eq. (51) and introduce an unperturbed
This is exactly the TE-polarized total Hamiltonian, E#4), Hamiltonian
when we identifyc, = ¢, C,=¢€,, and energye,= — C..
Let us next consider the boundary conditions. When the 2 2
wave is TM polarized, the boundary conditions for a one- HOEp——l— p_°2+5182=E0, (52

dimensional fieldH(z) are 4 4
Halzy=Halz,, (46)  where the constant coefficients are
1 H 1 H ~ €5 - Coe
= ==, (47) Cy=— > and Eo=- 29 5 (53)
€1 9z Z, €2 Iz Z, Go_zky Go_zky

where the subscripts denote media 1 and 2,mmépresents The inhomogenougperturbation part consists of the terms
the boundary. If the incident wave is perpendicular to thethat are proportional to the nonlinearity coefficient
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2Ck;  ,  e5—Begk;

€ e
(e0—2k))? 2(€o—2k5)?

H.i=e,

4]. (54) 15k @), - - o

As before, we write the perturbation Hamiltoni&h, with
canonical variables, B, andp,,

2C k2 1 5 00 1 1 ¢ . )
€22C5K] \/ﬁ ! ! Voo
= | = o+ a — C " ! I‘ "
T (e 2K)? %, P : / Vo
2 2 ," ," \ ’l’
: €2( €5~ 6€oky) ; / I,
Ksif2Ey (2t )| + 200k N VA
r{ 1 B ]} 2(60_2k)2,)2 1.5 . | |
0.0 3.0 6.0
2
1 12
x|z tat vaz—pi?:lsirtzvazwn}] . 2el"e
C1
(55) 20t ];;) I I 1
The corrections are calculated similarly as in the case of TE / “" : “\ / “‘.
polarization. One can show that the averaged changes of P P P
andg3’, to first order, become P o [
1.0F \ [ '.l ! '.l 1
— 26,C3+3aoC Y R Y N S B
a;=0 and Bi=ey -, (56 e
i A
whereC5; andC, are constant coefficients defined as 00 ‘\‘ ;" “.‘ ! “.‘ ,v" T
2C,K? 2— 6egk? , T -
Ca=————2— and Cp=——. (57)
3 (co— 2k§)2 4 20— 2k§)2 0.0 3.0 6.0
2,1z

Again we have neglected the higher-order perturbation

terms. This is possible due to the assumption tHatbe FIG. 2. First-order corrections of the propagation invariatds;

small. We illustrate the variation ofr; and its averaged a; and(b) B; . The rigorous values are represented by dashed lines
’ P . / ' and the corresponding averaged results are illustrated with solid

value a;, frqm Eg.(56), in Fig. 2a). Similarly, 8, and 5, lines. The ensemble is taken over three periods and the fields are

are shown in Fig. @) over three cyclesz=3d. In both

; . S TM polarized.
figures we have used, for simplicity, the values=2, C, potanze

=1, C,=1, and\/aoz—clpczzl. . )
Expressions in Eq56) are readily integrated, resulting in Separate all nonlinear terms frohi, in order to keep the
mathematical formalism clear.

2C,Cat 3anC In Sec. V we give a numerical example to demonstrate the
a1=ag and Bi=Bpt e 13 = 0 42, (58  validity of the analytical perturbative formulas, E&8). We
4cy also compare these TM results to the corresponding values of

. ) TE polarization.
and these values are to be substituted into the unperturbed

formulas of the electric-field amplitude and phase, EQ6)
and (27). This is our main result for TM polarization. The
first-order corrections to the propagation invariants and the
resulting field are comparable to the corresponding formulas The accuracy of the approximative analytical solutions,
for TE polarization, Egs(36) and(37). If the nonlinearity is  Egs. (36), (37), and (58), is readily assessed by the exact
increased sufficiently, the assumption of sntdjimay break  nonlinear thin-layer theory. This is a new method that was
down. In this situation the perturbation Hamiltonian can bepresented, mainly for TE-polarized fields, in REL6]. In
expanded further in a Taylor series and the corrections cakhis section we briefly summarize the main features of the
culated to higher orders. method, with an emphasis on TM polarization.

We note that there is also another way to define the com-
plete perturbed Hamiltoniaty,. The inhomogenous part

IV. THIN-LAYER THEORY

H, is chosen to consist of the second term of &) alone A. TE polarization

while the first term is absorbed into coefficieat. This The general idea of the thin-layer theory is that the non-
choice mixes the linear and nonlinear modes in the homoglinear medium is divided intdN thin slabs[16]. In each in-
enous Hamiltoniatd,. The effect of the perturbation Hamil- dividual slabj (j=1, ... N), the nonlinear Kerr-Maxwell

tonian H; becomes weaker. However, we have chosen tequation(3) is exactly solved using a trial function



PRE 61 CANONICAL PERTURBATIVE APPROACH TO.. .. 7105

E;(z)=A, cogk;, 1z)+ 'B; sm(kJ 2Z) (59 30

and a thin-layer approximatiorkpAz)zmo (1=1,2). Here
A; and B; are constant amplitudes, arg,; and k;, are
propagation constants.

2
I
i

S
The boundary conditions between two consecutive thin g™ 15| .
slabs determine the characteristic matrix of the nonlinear me- «
dium -
A, 1 ih[A
=|. : (60)
Bj] lik’ph 1By oo} 1
where h is the slab thickness. Wave vectdr,, ,;=c; 00 0.5 10
+cy|Aj441|% is amplitude dependent, in contrast to the con- 10° n2IA.I2
ventional linear theory19]. Since the wave vector is not h
constant(it depends on the value of the electric figlthe FIG. 3. Scattered intensity for the exact thegdpts and the

numerical computation is initiated from the back surface ofperturbative resulsolid line), when the incident field is TE polar-

the nonlinear medium. In this way one can propagate thézed, n’=1.45, nj=1.6, andd~2.2\. The incident and the re-

wave through the layer and fin@vithout iteration the elec- flected intensities are denoted P |? and|B;|?, respectively.

tromagnetic field solution on the front boundary of the non-

linear medium. The accuracy of the technique is assessed and A 1 i€\ (A,

more detailed physical explanations are given in [RE6]. ( J) =(. 2 : )( : ) (63
Bj ij+lh/€j+l 1 Bj+1

B. TM polarization whereh is the slab thickness. Amplitude&y_; andBy_;

The waves in TM polarization are treated substantiallyare obtained using Eq63).
similarly. However, a further assumption is needed, namely This procedure, Eq962) and (63), is repeated for each
that the refractive index be constant in each separate thinonlinear layeyj. Finally the incident and the reflected am-
slab, i.e.,de;/9z=0 (j=1,...N). In the limit of zero plitudes,A; andB;, are determined at the boundary of the
layer thickness this assumption will be valid. Now the non-front linear layer and the first nonlinear slab. The plot
linear Kerr-Maxwell equatiori8), together with Eqs(5) and  |B;/A;|? versusn,|A;|? uniquely illustrates the intensity re-
(9), is solved using a trial function flected off the nonlinear structure as a function of the input-
wave intensity.

H;=A, cogk;z + SI kjz 61
€2) intk;2) (61 V. NUMERICAL RESULTS
and a thin-layer approximatiorkﬁAz)Z%O. HereA; and B, We investigate nonlinear wave reflection in a three-layer
are constants, ankj, is a wave vector in th¢th nonlinear  structure, Fig. 1 witm”=n’. These types of systems have
thin slab. important applications in modern optoelectronics, for ex-

Again, the numerical computation of the nonlinear solu-ample, as waveguides and nonlinear mirfdr3]. We verify
tion is initiated from the back surface of the nonlinear layer.the validity of the perturbative solutions of the canonical
The transmitted amplitude is taken as some arbitrary comtheory by comparing them to the exact nonlinear thin-layer
plex number, after which amplitude coefficietg andBy  results.
are calculated with the help of the boundary conditions be-
tween the linear medium and the last nonlinear slab. Using A. TE polarization
Eq. (9) and the assumption of constat, Eq. (5) is written

in the form In the first numerical example the refractive indices of the

media are takem’=1.45 andny=1.6 (for illustrative pur-

H.12 |H!I? poses. An incident plane wave of wavelength=1.06
€j=€pt e k§ e—J + 6—' ) X 10~ % m propagates perpendicularly to the structére0.
] ] The thickness of the nonlinear middle layer is chosen so that
2 in the linear casg¢n,=0, see Eq.2)] all light passes the
— et e, k§| i|2 +|Bj|2), (62)  Structured~2.2\. The parameter that is varied during the
lejl computation is the nonlinear coefficient. The reflected

) _ _ _ intensities in the two different nonlinear theories are illus-
whereey=ng and e;=2ngyn,. Equation(62) is a third-order  trated in Fig. 3 as a function af,|A;|?, where|A,|? is the
polynomial for ¢; and its root can be found by numerical incident-wave intensity. The solid line represents the analyti-
[20] or analytical(Appendix B means. cal formulas of the canonical perturbation theory, EHg3),

When the root ofey is known, wave vectoky may be  while the dots are the corresponding exact numerical results
computed using Eq8), i.e., ki = €;—kj . We may then con- of the nonlinear thin-layer theory. In the latter method, one
struct the TM-polarized characteristic matrix, typically needs about Pathin layers per wavelength. Figure
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FIG. 4. Scattered intensity. The thickness of the nonlinear layer FIG. 5. Scattered intensity. The index of the middle layer is
is d=31\, but otherwise the parameters and illustrations are as imy=3.6 andd~2.1\. Parameten’, the dots, and the line are as in
Fig. 3. Fig. 3.

3 shows that the perturbative results coincide with the exacy yery accurate estimate for the field within the nonlinear
numerical results. We also note thafA;|? is a dimension-  edium.

less quantity and that for physical system$E|><1. This  \ye conclude that while nonlinearity influences the scat-
condition fixes the upper limit of the horizontal scale in Fig. tgreq intensities, for TE waves the first-order perturbative
3. ) o ) analytical solution to the nonlinear fields, E§7), already is

_ When the nonlinear coefficiemt;=0, there is no reflec- iy an excellent agreement with the exact theory. The accu-
tion and the solution to Maxwell's equations in the middle ¢y of the result is independent of the index and layer thick-
layer can be expressed with two counterpropagating plangess of the nonlinear medium. Hence the analytical pertur-
waves. The corresponding optical intensity then is a periodigative formulas can reliably be used for the evaluation of
function of indexn,. When the nonlinearity is added,  \ave reflection and propagation in nonlinear layered de-
changes the period of oscillations according to E2¥a.  yjces. A significant advantage of the canonical theory over
The fields fall off from exact resonance and the scattereghe thin-layer theory relates to the computation time. The
intensity increasesee Fig. 3 In our numerical example for  cgjculation of a thin-layer problem typically takes several

nonzeron, the relative amount of the reflected light is quite minutes of CPU time on a conventional PC, whereas the
Sma”, less than IdS The small value of Scattering is en- perturbative result is obtained |mmed|a'[e|y

tirely due to the specific system parameters used in the com-
putation.

Next we change the nonlinear layer thicknesslte31\, o _ ) _ )
but otherwise retain the same system parameters as before. We now perform a similar scattering analysis for fields in
The results of the reflection calculations using the two non-TM polarization. The first-order analytical expressions are
linear theories are now shown in Fig. 4. The solid line anddiven by Eq.(58), together with Eqs(26) and (27). The
dots are the perturbative and exact results, respectively. TH/Stem parameters are taken as follows=1.45, ny= 1.6,
results of both nonlinear methods again match in details. I =1.06<107° m, §=6°, andd~2.2\. The scattered inten-
general, the scattered intensity increases when the nonlinegities are illustrated in Fig. 6. The solid line corresponds to a
layer becomes thicker, which is due to the longer spatiaPerturbative solution and the dots are obtained by using the
regime of nonlinear interaction. The analytical explanation,TM-polarized nonlinear thin-layer theory. As in the case of
which can be seen from Eq37a), is that the “nonlinear TE polarization, the reflected intensity vanishes in the linear
intensity” oscillates with a different period as compared tolimit and it increases when; is varied.
the corresponding linear intensity, and the differences be- The two nonlinear theories deviate from each other when
come larger when the distance increases. We may furthéhe nonlinearity is sufficiently large. There are many reasons
deduce that if the interaction region is sufficiently long andfor this small diversion. The angle of incidence is relatively
the refractive indices are properly chosen, the nonlinear fieldarge, #=6°, which givesk’~0.023. So we have reached
may oscillate an extra cycle causing a bistable effect in thé¢he limit of k§ being small, as was assumed in the derivation
scattered fields. of perturbative results in Sec. Il B. Assumptigdb0) and

Finally, we change the index of refractionig=3.6 and boundary condition$48) and (49) are slightly violated, but
choose thicknesd~ 2.1\ for the nonlinear layer. The corre- these approximations are still quite reasonable for sthah
sponding scattering results are given in Fig. 5. The systeraddition, the higher-order corrections in the expansion by
parameters are comparable with those used in Fig. 3. Wheperturbation may also alter the result. But clearly the pertur-
the index jump between the linear and nonlinear media bebative analytical solution, Eq58), provides a useful, tan-
comes large, more light is reflected by the layered structureggible expression that incorporates the nonlinear effects char-
But the perturbative analytical solution, E87), again gives acterizing TM polarization. Changes in the index or layer

B. TM polarization
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' " ' " ' the first-order correction by perturbation gives very precise
solutions for the nonlinear fields. The method is more di-
rectly applicable to fields in TE polarization, but it also gives
information about the TM polarized waves. We note that the
latter case involves an exact quadrature solution of the non-
linear field in TM polarization. Our perturbative approach

4 has many advantages over other techniques; the nonlinear
solutions have an analytical form, they are accurate, and
readily implemented on a computer.
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10" n,lA] APPENDIX A: QUADRATURE SOLUTION

FIG. 6. Scattered intensity for the exact theddpts and the _In this Appendix the TM-polarized Maxwell equati¢8)
perturbative resultsolid line), when the incident field is TM polar- Wwith generalized permittivity

ized, #=6°, np=1.6, andd~2.2\. )
€= eyt &, (|E[?) (A1)

thickngss of the _nc_>n|inear medium_ give results that areg exactly solved with quadratures. H@E|2) is some real
graphically very similar to those in Fig. 6. function of the field intensity. The formalism is similar to

Hence the simulation results show that the first-order per, 4+ in Ref.[21], but now the full phase dependence is also
turbative analytical expression for the electric field in TM (5 en into acco’unt.

polarization, Eqst26), (27), and(58), is not quite as accuraté ¢ js assumed that the nonlinear medium is nonabsorbing,

as the corresponding formula for a TE-polarized wave, buj o ' 'is real. The effective permittivity is then also a real
still in most cases it gives a good estimate for the TM-¢ 1 tion. The magnetic field is set as

polarized field in a nonlinear medium. _
H(z)=h(z2)e'*?, (A2)
VI. CONCLUSIONS _ o
whereh(z) and ¢(z) are real functions. On substituting Eq.

We have investigated a three-layered structure, in which @A2) into Eq.(8), two equations are obtained from the imagi-
nonlinear Kerr medium is sandwiched by two linear media.nary and real parts separately, viz.,

The incident light is either TE or TM polarized. Similar sys-

tems have many applications, e.g., in contemporary optoelec- 2¢'h"e+ p"he—¢p'he' =0, (A3a)
tronic devices. Especially, we studied the nonlinear wave

reflection in layered structures. We used two different meth- h\" ¢'?h (K]

ods; a perturbation theory of classical mechanics and an ex- el T e e 11h. (A3b)

act nonlinear thin-layer theory. Our analytical and numerical
results show that a weak nonlinearity changes the period dEquation(A3a) is integrated with respect tn
oscillation of the field within a nonlinear layer. This has o
many consequences. For instance, by using a suitable non- ¢'h —C.=const (Ad)
. . . — 1= y
linear medium one can tune an optical system on and off
resonance. If the indices of refraction and the thickness of S .
the nonlinear medium are properly chosen, a bistable outp@ter which it is inserted into EqA3b),
is possible. Our analysis is not restricted to a sample of three ’ 5
media only, but it can readily be extended to multi-layered E L E_ &_1 h (A5)
structures. € 3 e '

We used Hamilton’s canonical theory to solve the nonlin-
ear field equations perturbatively. This is manifestly a newBy using Eq.(A4), Eq. (9) becomes
approach to apply classical mechanics in optics. With the
help of the Hamilton-Jacobi theory the electromagnetic fields , ,h? h'Z+(¢’h)?
of a linear system are expressed with constant canonical vari- |E|*= ky_2 L —
ables. The nonlinearity is treated as a small perturbation that € €
modifies the canonical invariants. The “optical Hamil-
tonian” includes a term 2, which makes it generally in- Ky L (A6)
teresting, because such Hamiltonians do not have a counter- Y2 2 p2’
part in customary systems of classical mechanics. In
perturbative approaches the convergence is not always gudret | (e—ey) be an inverse function oé,f(|E|?); it is as-
anteed. Hence we compared the perturbative results to e&sumed that this inverse exists. Then E41) with Eq. (A6)
exact nonlinear thin-layer theory. We showed that alreadyan be written as
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h/ 2 5 h 2 Cl 2
? =|(6—EO)—ky ; - F . (A?)
Equation(A7) is differentiated with respect tn
2 () 22 (e ern ci A8
~l= == yE(E —€'h)+ R (A8)

after which Eqs(A5) and (A8) are combined resulting in

hh' [ k2
2—<—y—1

(A9)
€ €

' 2 h ’ ’
=| —2ky§(eh —€'h).

When Eq.(A9) is multiplied by e, it can be rewritten in a
relatively simple form

2k%— € !
( Y )hZ —el’. (A10)
€
This is readily integrated ovez,
€
h’=———[el(e—€)—J(e—€) +Cp], (ALl
2ky—€
where

J(e— GO)IJ €'l(e—¢p)dz, (A12)

andC, is an integration constant.
Finally, by using Eq(A7) the exact solution to the TM-
polarized Maxwell equation, Ed8), is expressed as

€

h2:2k2_€[e|(e—eo)—J(e—eo)+c2], (A13a)
y
2.2
h'2= €2l (e— e)—k2h2— ;2 . (A13b)

The phase factog of the magnetic field is determined from
Eq. (A4). In this analysis we have presumed tlig# 0 and

e,f(|E|?) is invertible, but otherwise the solution is general.

It is not restricted to any specific nonlinear mediungan be
an arbitrary real function of the field intensity.

If we further specify the nonlinear medium to contain

only Kerr-type nonlinearities, then
=€+ &|E|? (A14)

and
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J= (f_'fo)2

7e, (A15)

where €, is related to the Kerr coefficient. We have not
introduced the domain of the nonlinear equations. Hence the
solution given by Eq(A13) has two constant€; and C,

that are determined by the boundary conditions.

APPENDIX B: THIRD-ORDER ROOT

When the nonlinear medium is nonabsorbing or absorp-
tion is weak, the index of refraction is uniquely determined
for TM polarization, i.e., the third-order polynomial in Eq.
(62) has only one real root that has a physical meaning. The
general form of Eq(62) is

e—D,e?+D,e—Dy=0, (B1)
whereD,, D,, and D5 are real and positive coefficients.
Following the notations of Ref22], the quantity

1

q3+rzzm(27D3+4D§—18DoD102—D§D§+4DOD§),
(B2)

with definitions

1 1,
q:§D1—§D , (83)
1 1,

r:6(3D0_D1D2)+2_7D2, (B4)

determines the number of real roots of EB1). If D;=0

(no absorptiol expressionB2) is always positive and Eq.
(B1) has one real root and a pair of complex conjugate roots.
If D, is a small positive numbdmweak absorptiop the root
remains unique. The algebraic expression of this positive
root is

1
e=5{2D+ 22 (27Dy—9D,D,+2D3

—3./3y27D%+4D3-18D,D;D,—D?D3+4D,D3)"?
+(27Dy—9D,D,+2D3+33

X \27D5+4D3—18D,D,D,—DiD3+4DyD3)]}.
(B5)

The other two roots of Eq(62) have imaginary parts and
hence they do not have a physical significance.
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