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Canonical perturbative approach to nonlinear systems with application to optical waves
in layered Kerr media

T. A. Laine* and A. T. Friberg†

Department of Physics–Optics, Royal Institute of Technology, SE-100 44 Stockholm, Sweden
~Received 29 December 1998; revised manuscript received 7 September 1999!

We investigate electromagnetic wave reflection and propagation in layered Kerr structures by introducing a
method based on the application of canonical perturbation theory to fields in nonlinear media. Via the
Hamilton-Jacobi formalism of classical mechanics, the waves in linear layers are expressed with constant
canonical variables. The nonlinearity is treated as a small perturbation that modifies the constant invariants. We
explicitly evaluate the nonlinear fields correct to first order by perturbation and compare the results to a
rigorous nonlinear thin-layer model. Both polarizations, TE and TM, are considered separately. An exact
quadrature solution of the nonlinear field in TM polarization is derived. We show that with weak nonlinearities
the perturbative technique yields simple and accurate analytical expressions for the nonlinear fields. The results
give physical insight into the use of nonlinear media for controlling the scattered fields in layered structures.

PACS number~s!: 42.65.Tg, 46.05.1b, 78.20.Bh
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I. INTRODUCTION

Nonlinear equations of evolution are frequently encou
tered in optics@1,2#. They occur as a consequence of t
interaction of intense laser light with matter. An especia
important nonlinear phenomenon is the Kerr effect in wh
the refractive index of the medium depends linearly on
electric-field intensity. Optical bistability@3# and particlelike
solutions, solitons@4#, have many potential applications i
optical communication@5# and optoelectronic devices@6#.
Depending on the polarization of the incident wave the Ke
Maxwell equations reduce to two different nonlinear equ
tions; in TE polarization they take on a relatively simp
form of a nonlinear Helmholtz equation, while in TM pola
ization the nonlinearity couples to the fields in a considera
more nontrivial manner. In some specific cases exact w
solutions can be found, but usually most theoretical con
erations are based on approximate techniques. If the no
earity is sufficiently weak the results are expected to
nearly exact.

The electromagnetic field propagation is conventiona
analyzed in layered and stratified structures. The fabrica
of such multilayered elements is technically possible, and
instance, optical bistability by excitation of a nonline
guided wave is readily observed in experiments@7#. From
the theoretical point of view layered media simplify the fie
equations and some nonlinear systems become analyti
soluble @8#. The ~non!linear electromagnetic fields are us
ally represented by plane waves@9#. This involves an ap-
proximation that the field-envelope variation occurs slow
over distances much larger than an optical wavelength@10#.
However, in many situations the nonlinear equations
solved using perturbative techniques. There exist two m
practices: either these equations are linearized by expan
the solutions about the unperturbed ones@11#, or the pertur-
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bation method is based on the inverse scattering theory@12#.
We take a new approach to the perturbative nonlin

theories. We investigate layered structures that include n
linear Kerr media. For simplicity, we consider a system
three dielectric layers in which the middle layer is taken
be a Kerr medium. This geometry is common in optoele
tronic systems@13# and it describes, for example, a nonline
mirror or waveguide. We calculate the nonlinear electric a
magnetic fields perturbatively using the canonical Ham
ton’s theory@14,15#. To our knowledge this technique is a
altogether new application of classical mechanics in opt
From the Hamilton-Jacobi equation@14# we find the exact
linear electromagnetic solution in terms of canonical va
ables that are constants of integration. The nonlinearity
treated as a small perturbation that modifies the constan
variants. With weak nonlinearities this assumption is phy
cally justified. We establish the first-order corrections by e
plicit calculations and assess the accuracy of the results u
the rigorous nonlinear thin-layer theory@16#. Both TE and
TM polarizations are considered separately. An ex
quadrature solution of the TM-polarized nonlinear field
also derived. We show that the perturbative approach le
to accurate analytical solutions for the nonlinear fields. O
results give analytical insight into the nonlinear wave beh
ior and demonstrate, for example, that in layered structu
the nonlinearity can be used to manipulate the scatte
fields.

This paper is organized as follows. In Sec. II we introdu
the model and the main nonlinear equations for both po
izations. In Sec. III we apply Hamilton’s canonical perturb
tion theory to the fields in a Kerr medium and find the firs
order solutions. In Sec. IV we briefly describe the nonline
thin-layer theory. The numerical results are presented
discussed in Sec. V. Finally, in Sec. VI we summarize
main conclusions.

II. NONLINEAR MODEL

Layered geometries are elementary structures that are
quently employed in optical systems. The applications
7098 ©2000 The American Physical Society
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PRE 61 7099CANONICAL PERTURBATIVE APPROACH TO . . .
clude planar waveguides, optical switches, sensors,
When the medium contains nonlinearities, the investigati
of the rigorous electromagnetic solutions become effectiv
more complex. The exact expressions@8# usually also are too
complicated to be of value in practical applications.

We take an alternative approach to the exact nonlin
theories. We aim to find simple but accurate analytical for
for the nonlinear fields. We first introduce the model e
ployed in this paper and present the nonlinear field equat
whose perturbative solutions within the Hamiltonian form
ism are examined in Sec. III. Both polarizations, TE and T
are considered separately.

A. Geometry

The nonlinear system is illustrated in Fig. 1. For simpl
ity, we have taken it to consist of three dielectric layers on
The indices of refraction are denoted byn8, n, andn9. The
middle layer is assumed to be a Kerr medium, while
other two layers are linear andn95n8. An incident wave of
frequencyv propagates at an angleu to the normal of the
structure. If the middle layer is linear and its thickness
properly chosen, one may obtain a situation in which all lig
traverses the structure and the reflected intensity is zero

We study the effects of the nonlinearity to the scatte
fields. This is an interesting and important application
layered structures. Within the middle layer the waves sat
two different nonlinear equations depending on the state
polarization of the incident light. In our approach, we sol
these nonlinear propagation equations perturbatively u
Hamilton’s canonical theory~Sec. III!.

B. TE polarization

For a TE-polarized~s! wave the electric field is perpen
dicular to the plane of incidence. By starting from Maxwel
equations~in Gaussian units with unit magnetic permeab
ity!, one may derive a nonlinear equation for the electric fi
E5E(y,z),

]2E

]y2
1

]2E

]z2
1n2E50, ~1!

FIG. 1. Layered geometry of the nonlinear model. The angle
incidence isu, n85n9 andn are the refractive indices of the linea
and nonlinear media, respectively.
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where the effective index of refractionn satisfies the Kerr
law,

n~y,z!5n01n2uE~y,z!u2. ~2!

Here uE(y,z)u2 is the optical intensityuEu25EE* , n0 is the
refractive index of the linear medium, andn2 is a small real
coefficient that describes the strength of the nonlinearity.
simplicity, we use scaled forms of the coordinates, i.e.y
→y/k0 and z→z/k0, wherek05v/c and c is the speed of
light in vacuum.

Especially, we want to study systems for which the fie
vary as plane waves along they coordinate, i.e.,E(y,z)
5E(z)eikyy, whereky5n8sinu is the wave vector~in units
of k0) in y direction. The refractive indexn then becomes a
function of z only, n(y,z)5n(z), and Eq.~1! assumes the
form

]2E

]z2
1c1E1c2uEu2E50, ~3!

wherec15n0
22ky

2 andc252n0n2. We call Eq.~3! the TE-
polarized Kerr-Maxwell equation, and it is one of the no
linear equations that we solve perturbatively. In the secti
below E denotes the reduced one-dimensional field,E
5E(z).

C. TM polarization

In the case of TM polarization the magnetic fieldH
5H(y,z) is perpendicular to the plane of incidence. FieldH
satisfies the two-dimensional nonlinear Maxwell equation

]

]y S 1

e

]H

]y D1
]

]z S 1

e

]H

]z D1H50, ~4!

wheree(y,z)5n2(y,z) is the electric permittivity of the me-
dium. The Kerr law can now be written in the form

e~y,z!5e01e2uE~y,z!u2, ~5!

where e05n0
2, e252n0n2, and the intensity is determine

from the formula

uE~y,z!u25U1e ]H

]y U
2

1U1e ]H

]zU
2

. ~6!

When the magnetic field is taken as a product of two fu
tions,

H~y,z!5H~z!eikyy, ~7!

Eq. ~4! reduces to

S H8

e D 8
5S ky

2

e
21DH, ~8!

and the intensity in Eq.~6! takes on the form

f
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7100 PRE 61T. A. LAINE AND A. T. FRIBERG
uE~z!u25ky
2UHe U

2

1UH8

e U2

. ~9!

The prime indicates differentiation with respect toz. We call
Eqs. ~5! and ~8!, together with intensity~9!, the TM-
polarized Kerr-Maxwell equation. This is the second nonl
ear equation to which we apply the canonical perturbat
theory. Throughout in the sections that follow,H denotes the
reduced field that depends onz only.

III. CANONICAL THEORY

We calculate the nonlinear electromagnetic field confi
ration perturbatively using the canonical theory@14,15#. This
is manifestly a new approach to apply classical mechanic
optics. Hamilton’s theory has been employed earlier in qu
different contexts, for example, in electron optics@17# and in
variational calculus@18#. In our approach, we make use
the Hamilton-Jacobi theory and solve the linear optical s
tem exactly in canonical variables that are constants of i
gration. When the nonlinearity is sufficiently weak, it may
treated as a small perturbation that disturbs the linear sys
In most materials this is a physically reasonable assumpt
The canonical perturbation theory is used to compute
corrections to the constant invariants. Since the canon
theory is simpler and more directly illustrated with TE p
larization, we discuss this situation first. The application
TM fields is examined in Sec. III A.

A. TE polarization

We commence by showing the relation between class
mechanics and optics. We introduce a Lagrangian that
scribes the present one-dimensional optical system and
form a Legendre transformation leading to Hamilton
theory. We determine the exact solution of the linear sys
in terms of constants of integration, and subsequently ap
the canonical perturbation theory to the nonlinear interact

As is known from the calculus of variations, optical sy
tems can be described within the Lagrangian formalism.
consider the following Lagrangian

L5U]E

]zU
2

2c1uEu22
c2

2
uEu4, ~10!

whereE5E(z) is the complex-valued field, andc1 and c2
are constant coefficients. The Euler-Lagrange equation
E* then reproduces the nonlinear TE polarized Ke
Maxwell equation, Eq.~3!. Hence the Lagrangian~10! in-
cludes all the physics needed to describe a nonlinear
polarized system.

Our interest is to find a Hamiltonian that corresponds
Eq. ~10!. Thus we express the complex electric field w
two real functions «(z) and w(z), i.e., E(z)
5«(z)exp@iw(z)#. The Lagrangian of Eq.~10! transforms
into

L5L~«,«8,w8!5«821w82«22c1«22
c2

2
«4, ~11!
-
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where, as before, the prime denotes differentiation with
spect toz. As in conventional classical mechanics, we m
define two pairs of canonical variables

~«,p! and ~w,pc!, ~12!

where the conjugate momenta are derived from the Lagra
ian as

p5
]L

]«8
52«8, pc5

]L

]w8
52w8«2. ~13!

The Hamiltonian is now found by applying the Legend
transformation to Lagrangian~11!,

H total~«,p,pc![«8p1w8pc2L5
p2

4
1

pc
2

4«2
1c1«21

c2

2
«4.

~14!

The right-hand side resembles classical systems with a
dratic momentump2 and with potentials«2 and «4. How-
ever, the second term (pc /«)2 is rather specific because
does not have a counterpart among the conventional sys
of classical mechanics. In optics, the origin of this term c
be traced to the phase factor of complex fieldE.

The total Hamiltonian can be divided into two part
H total5H01H1. Here H0 is the Hamiltonian of the linear
system (c250)

H05
p2

4
1

pc
2

4«2
1c1«25E0 , ~15!

and the influence of the nonlinearity is described by

H15
c2

2
«4. ~16!

ConstantE0 represents the ‘‘energy’’ of the linear system.
is assumed that the solution corresponding to Eq.~15! does
not vanish at the boundaries of a layered structure, fr
which it follows thatE0 must be~positive! nonzero.

Let us next determine the analytical form of the elect
field of the linear systemH0. The customary solution con
sists of two counterpropagating plane waves. In our appro
we write the same analytical solution using canonical va
ables that are constants of integration, i.e., independentz.
This specific form of the solution makes it possible to app
the canonical perturbation theory to the nonlinear partH1
~perturbation!. When the nonlinearity is weak, the changes
the linear theory are expected to be small. The theoret
background of the canonical theory is based on
Hamilton-Jacobi equation, which describes the canon
transformation to constant variables@14,15#. When solving
the Hamilton-Jacobi equation, we simultaneously get an
act analytical solution to the linear problem.

What are the constants of integration? The Lagrangian
Eq. ~11! ~with c250) does not include the generalized coo
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PRE 61 7101CANONICAL PERTURBATIVE APPROACH TO . . .
dinatew and so the corresponding momentumpc already is a
conserved quantity. If the Euler-Lagrange equation is form
for w, the result is

d

dzS ]L

]w8
D 5

d

dz
pc50. ~17!

This shows thatpc indeed is a constant with respect toz.
We now use the Hamilton-Jacobi theory to transform

canonical pair (p,«) to variables that are constants (a,b).
With the help of Eq.~15! we form the Hamilton-Jacobi equa
tion for S ~Hamilton’s principal function! @14#,

1

4 S ]S

]« D 2

1
pc

2

4«2
1c1«21

]S

]z
50. ~18!

The solution to Eq.~18! is found in the form

S~«,a,z!5W~«,a!2az, ~19!

whereW(«,a) is Hamilton’s characteristic function anda is
a constant. Equation~19! is substituted into Eq.~18!, result-
ing in

1

4 S ]W

]« D 2

1
pc

2

4«2
1c1«25a. ~20!

Constanta may thus be identified with energyE0, i.e.,

H05a. ~21!

SinceH0 is not an explicit function ofz, energyE0 ~and thus
a) is one constant of integration. On solving Eq.~20! with
respect toW,

W52AaE d«A12
pc

2/~4«2!1c1«2

a
, ~22!

we find thatS in Eq. ~19! becomes

S52AaE d«A12
pc

2/~4«2!1c1«2

a
2az. ~23!

One could perform the integration, but that is not required
solve the Hamilton-Jacobi equation.

The third constant of integration,b, is obtained by differ-
entiating Hamilton’s principal function with respect toa,
i.e.,

b5
]S

]a
5

1

Aa
E d«

1

A12~pc
2/~4«2!1c1«2!/a

2z.

~24!
d

e

o

Carrying out the integration with respect to« yields

z1b5
1

2Ac1

arcsinF 2c1«22a

Aa22pc
2c1

G . ~25!

On inverting Eq.~25! we find an expression for the envelop
of the electric field

«5F 1

2c1
$a1Aa22pc

2c1sin@2Ac1~z1b!#%G1/2

. ~26!

The complete electric-field solution includes also the ph
factor w. From Eqs.~13! and ~26! we obtain

w5
pc

2 E 1

«2
dz5tan21F a

pcAc1

tan@Ac1~z1b!#

1
1

pc
Aa22pc

2c1

c1
G1w0 , ~27!

wherew0 is a constant. We note thatw2w0 may be positive
or negative depending on the sign ofpc ~energya is always
positive!.

The field momentump, which is canonical pair to«, is
obtained in a similar way from Eqs.~19!, ~20!, and~26!. The
result is

p5
]S

]«
5

]W

]«
52Aa2

pc
2

4«2
2c1«2,

5A2A ~a22c1pc
2!cos2@2Ac1~z1b!#

a1Aa22c1pc
2sin@2Ac1~z1b!#

. ~28!

One may verify that envelope~26! and momentum~28! in-
deed satisfy the Hamiltonian of the linear system, Eq.~15!.
Hence we conclude that by using the Jacobi-Hamilton the
we have found an exact solution for the electric field (c2
50) in terms of constants of integrationa, b, andpc .

Once the rigorous solution is known, we may determ
all unknown quantities of the linear system in terms of co
stants of integration. For example, the Lagrangian of E
~11! assumes the form

L52 Aa22c1pc
2sin@2Ac1~z1b!# , ~29!
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7102 PRE 61T. A. LAINE AND A. T. FRIBERG
and Hamilton’s principal functionS becomes

S~a,b,pc!5E Ldz1const

5
1

2Ac1

Aa22c1pc
2cos@2Ac1~z1b!#1const.

~30!

In both equations we have used the conditionc250.
We are now in a position to apply the canonical pertur

tion theory to the nonlinear partH1. The canonical property
of a given coordinate transformation is independent of
particular form of the Hamiltonian. Therefore the transfo
mation (p,«)→(a,b) generated byS(«,a,z) remains a ca-
nonical transformation for the perturbed system@14#. Only
now the new HamiltonianH total will no longer be constan
with respect toa and b. The equations of motion for the
transformed variables are

a852
]H1

]b
and b85

]H1

]a
. ~31!

WhenH1 is taken according to its definition, Eqs.~16! and
~26!, one obtains

a852
c2

Ac1

Aa22c1pc
2cos@2Ac1~z1b!#«2 ~32!

and

b85
c2

2c1
S 11

asin@2Ac1~z1b!#

Aa22c1pc
2 D «2. ~33!

Generally, both ‘‘constants’’a and b will depend on the
field intensity uEu25«2 in the perturbed system. Howeve
when the nonlinearity is weak, as is normally the case
optics, only the first corrections toa0 andb0 are important,
where the subscripts denote the constant unperturbed~linear!
values ofa andb.

Hence, as a final result, we determine the first-order c
rections toa and b. They are immediately obtained from
expressions~32! and~33! via a direct substitution of the lin
ear valuesa0 and b0 on the right-hand sides, i.e.,a18
5a8u0 andb185b8u0. However, these forms of the solution
are not particularly convenient because of the rapid osc
tory motions. It is customary to calculate a net value. Fo
d-periodic functiong(z)5g(z1d), the average value is de
fined as

ḡ5
1

dE0

d

g~z!dz. ~34!

From Eqs.~32! and ~33! we may identify the period to be
d5p/Ac1. Hence the secular perturbation at a constant
is given by

a18̄50 and b18̄5c2

3a0

8c1
2

. ~35!
-

e
-

n

r-

-
a

te

These equations are integrated overz resulting in

a 1̄5a0 and b 1̄5b01c2

3a0

8c1
2

z. ~36!

We observe that the Kerr-type nonlinearity does not cha
the ‘‘energy’’ of the system (a0) to first order.

According to our perturbative method the form of th
electric field@Eqs.~26! and~27!# remains unchanged but th
constants of integration are modified by the interaction.
using Eq.~36! the electric fieldE(z)5«(z)exp@iw(z)#, cor-
rect to first order by perturbation due to a~weak! nonlinear-
ity, thus is

«~z!5H 1

2c1
Fa01Aa0

22pc
2c1

3sinH 2Ac1F z1S b01c2

3a0

8c1
2

zD G J G J 1/2

, ~37a!

w~z!5tan21S a0

pcAc1

tanH Ac1F z1S b01c2

3a0

8c1
2

zD G J
1

1

pc
Aa0

22pc
2c1

c1
D 1w0 , ~37b!

where the four constantsa0 , b0 , pc , andw0 are determined
from boundary conditions, as usual. Equations~37a! and
~37b! are one of the main results of this paper. The nonl
earity alters the period of the oscillatory motion but leav
the strength of the intensity unchanged. The correspond
linear result is recovered in the limitc2→0. When the non-
linearity is increased it is reasonable to assume that the
teractions couple also to the ‘‘field energy’’ anda0 is modi-
fied. In this situation one could integrate Eqs.~32! and ~33!
for an exact result or calculate more corrections for the
pansion by perturbation. The latter is accomplished by s
stituting the values of Eq.~36! onto the right-hand sides o
Eqs.~32! and ~33! and repeating the procedure above.

The analytical results, Eqs.~37!, are numerically verified
in Sec. V using the exact nonlinear thin-layer theory dev
oped for planar structures with Kerr nonlinearities. The
fects of changes in the parameters of the nonlinear med
are also assessed.

B. TM polarization

The use of canonical perturbation theory with T
polarized fields is rather straightforward, mainly because
Lagrangian~10! has a simple form. In the case of TM pola
ization, the corresponding Lagrangian is more involved a
one is advised to consider a different approach. We use
following idea: we express the exact quadrature solution
the TM-polarized Kerr-Maxwell equation in terms of th
electric field and find its relation to the theory of TE
polarized waves. Both theories, TE and TM, are mathem
cally equivalent at normal incidence. On expanding the fie
in Taylor series at a small angle one gets the nonlinear in
actions that characterize the electric field of TM-polariz
waves, and a perturbative solution up to first order is fou
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In this technique, some additional assumptions are ma
hence the final result is expected to be slightly less accu
than that in TE polarization.

A general form of the exact quadrature solution of t
TM-polarized nonlinear Maxwell equation is given in Ap
pendix A @Eq. ~A13!#. When the nonlinear layer is taken t
be a Kerr medium, the solution for the magnetic-field en
lope becomes@from Eqs.~A2!, ~A13a!, ~A14!, and~A15!#,

h25
e

2ky
22e

@eI 2J1C2#, ~38!

whereC2 is constant and

h25uHu2, ~39!

e5e01e2uEu2, ~40!

I 5
e2e0

e2
5uEu2, ~41!

J5
~e2e0!2

2e2
5

e2uEu4

2
. ~42!

Using the notations above, solution~38! can be rewritten as

uHu25
e01e2uEu2

2ky
22~e01e2uEu2!

F ~e01e2uEu2!uEu22
e2uEu4

2

1C2G . ~43!

The only term that involves fieldH is on the left-hand side o
Eq. ~43!. We would like to replace it by some combination
field E and its derivative. By using the TM-polarized Max
well equations and Eq.~7! we obtain

uE8u25US ky
2

e
21DHU2

1ky
2US H

e D 8U2

, ~44!

where uE8u2 is defined in accordance with Eq.~6!. We ob-
serve that ifky

250, Eqs.~43! and ~44! reduce to

uE8u21e0uEu21
e2

2
uEu452C2 . ~45!

This is exactly the TE-polarized total Hamiltonian, Eq.~14!,
when we identifyc15e0 , c25e2, and energyE052C2.

Let us next consider the boundary conditions. When
wave is TM polarized, the boundary conditions for a on
dimensional fieldH(z) are

H1uz0
5H2uz0

, ~46!

1

e1

]H1

]z U
z0

5
1

e2

]H2

]z U
z0

, ~47!

where the subscripts denote media 1 and 2, andz0 represents
the boundary. If the incident wave is perpendicular to
e;
te

-

e
-

e

structure (ky50), one can show from Maxwell’s equation
thatE5Ey5 i e21]H/]z. Thus the boundary conditions~46!
and ~47! transform as

]E1

]z U
z0

5
]E2

]z U
z0

, ~48!

E1uz0
5E2uz0

. ~49!

In the former equality we also used the nonlinear Maxw
equation~4!. Equations~48! and ~49! are recognized as th
usual boundary conditions for TE-polarized waves. Thus
have shown that Eq.~45!, together with Eqs.~48! and ~49!,
relates the TE and TM polarizations; the mathematical f
malism is the same for both polarizations when the field
normally incident.

We investigate a more general situation in which the
cident wave propagates at an angle to the normal of
structure (kyÞ0). The mutual interactions of the fields mak
the general solution of Eq.~43! complicated. We assume tha
ky is a small parameter and Eq.~44! can be taken as

uE8u2'uHu2. ~50!

This is an additional approximation to keep the proble
soluble. From a physical point of view, the assumption n
glects the angular dependence in the kinetic part of the
grangian, i.e., nonzeroky modifies only the nonlinear poten
tial. The boundary conditions, Eqs.~48! and ~49!, are also
taken to remain approximatively valid for smallky . In the
numerical example in Sec. V we will justify the validity o
these assumptions.

Using Eq.~50! and a smallky condition we systematically
expand Eq.~43! in a Taylor series with respect toe2. To first
order the result is

uE8u21
e0

2

e022ky
2

uEu21
e2~e0

226e0ky
2!

2~e022ky
2!2

uEu4

1
C2

e022ky
2 F e02

e22ky
2

e022ky
2

uEu2G50. ~51!

All fields are in quadratic forms, so we may directly use t
canonical perturbation theory developed in Sec. III A.

We sete250 in Eq. ~51! and introduce an unperturbe
Hamiltonian

H0[
p2

4
1

pc
2

4«2
1 c̃1«25Ẽ0 , ~52!

where the constant coefficients are

c̃15
e0

2

e022ky
2

and Ẽ052
C2e0

e022ky
2

. ~53!

The inhomogenous~perturbation! part consists of the term
that are proportional to the nonlinearity coefficiente2,
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H1[e2F2
2C2ky

2

~e022ky
2!2

«21
e0

226e0ky
2

2~e022ky
2!2

«4G . ~54!

As before, we write the perturbation HamiltonianH1 with
canonical variablesa, b, andpc ,

H152
e22C2ky

2

~e022ky
2!2 F 1

2c̃1

$a1Aa22pc
2c̃1

3sin@2Ac̃1~z1b!#%G1
e2~e0

226e0ky
2!

2~e022ky
2!2

3F 1

2c̃1

$a1Aa22pc
2c̃1sin@2Ac̃1~z1b!#%G 2

.

~55!

The corrections are calculated similarly as in the case of
polarization. One can show that the averaged changes oa8
andb8, to first order, become

a18̄50 and b18̄5e2

2c̃1C313a0C4

4c̃1
2

, ~56!

whereC3 andC4 are constant coefficients defined as

C352
2C2ky

2

~e022ky
2!2

and C45
e0

226e0ky
2

2~e022ky
2!2

. ~57!

Again we have neglected the higher-order perturbat
terms. This is possible due to the assumption thatH1 be
small. We illustrate the variation ofa18 and its averaged
valuea18̄, from Eq. ~56!, in Fig. 2~a!. Similarly, b18 andb18̄
are shown in Fig. 2~b! over three cycles,z53d. In both
figures we have used, for simplicity, the valuesc152, C3

51, C451, andAa0
22c1pc

251.
Expressions in Eq.~56! are readily integrated, resulting i

a 1̄5a0 and b 1̄5b01e2

2c̃1C313a0C4

4c̃1
2

z, ~58!

and these values are to be substituted into the unpertu
formulas of the electric-field amplitude and phase, Eqs.~26!
and ~27!. This is our main result for TM polarization. Th
first-order corrections to the propagation invariants and
resulting field are comparable to the corresponding formu
for TE polarization, Eqs.~36! and~37!. If the nonlinearity is
increased sufficiently, the assumption of smallH1 may break
down. In this situation the perturbation Hamiltonian can
expanded further in a Taylor series and the corrections
culated to higher orders.

We note that there is also another way to define the c
plete perturbed Hamiltonian,H total. The inhomogenous par
H1 is chosen to consist of the second term of Eq.~54! alone
while the first term is absorbed into coefficientc̃1. This
choice mixes the linear and nonlinear modes in the hom
enous HamiltonianH0. The effect of the perturbation Hamil
tonian H1 becomes weaker. However, we have chosen
E

n

ed

e
s

e
l-

-

g-

o

separate all nonlinear terms fromH0 in order to keep the
mathematical formalism clear.

In Sec. V we give a numerical example to demonstrate
validity of the analytical perturbative formulas, Eq.~58!. We
also compare these TM results to the corresponding value
TE polarization.

IV. THIN-LAYER THEORY

The accuracy of the approximative analytical solution
Eqs. ~36!, ~37!, and ~58!, is readily assessed by the exa
nonlinear thin-layer theory. This is a new method that w
presented, mainly for TE-polarized fields, in Ref.@16#. In
this section we briefly summarize the main features of
method, with an emphasis on TM polarization.

A. TE polarization

The general idea of the thin-layer theory is that the no
linear medium is divided intoN thin slabs@16#. In each in-
dividual slab j ( j 51, . . . ,N), the nonlinear Kerr-Maxwell
equation~3! is exactly solved using a trial function

FIG. 2. First-order corrections of the propagation invariants;~a!
a18 and~b! b18 . The rigorous values are represented by dashed l
and the corresponding averaged results are illustrated with s
lines. The ensemble is taken over three periods and the fields
TM polarized.
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Ej~z!5Aj cos~kj ,1z!1
iB j

kj ,2
sin~kj ,2z! ~59!

and a thin-layer approximation (kj ,lDz)2'0 (l 51,2). Here
Aj and Bj are constant amplitudes, andkj ,1 and kj ,2 are
propagation constants.

The boundary conditions between two consecutive t
slabs determine the characteristic matrix of the nonlinear
dium

FAj

Bj
G5F 1 ih

ik j 11,1
2 h 1 GFAj 11

Bj 11
G , ~60!

where h is the slab thickness. Wave vectorkj 11,1
2 5c1

1c2uAj 11u2 is amplitude dependent, in contrast to the co
ventional linear theory@19#. Since the wave vector is no
constant~it depends on the value of the electric field!, the
numerical computation is initiated from the back surface
the nonlinear medium. In this way one can propagate
wave through the layer and find~without iteration! the elec-
tromagnetic field solution on the front boundary of the no
linear medium. The accuracy of the technique is assessed
more detailed physical explanations are given in Ref.@16#.

B. TM polarization

The waves in TM polarization are treated substantia
similarly. However, a further assumption is needed, nam
that the refractive index be constant in each separate
slab, i.e., ]e j /]z50 ( j 51, . . . ,N). In the limit of zero
layer thickness this assumption will be valid. Now the no
linear Kerr-Maxwell equation~8!, together with Eqs.~5! and
~9!, is solved using a trial function

H j5Aj cos~kjz!1
i e jBj

kj
sin~kjz! ~61!

and a thin-layer approximation (kjDz)2'0. HereAj andBj
are constants, andkj is a wave vector in thej th nonlinear
thin slab.

Again, the numerical computation of the nonlinear so
tion is initiated from the back surface of the nonlinear lay
The transmitted amplitude is taken as some arbitrary c
plex number, after which amplitude coefficientsAN andBN
are calculated with the help of the boundary conditions
tween the linear medium and the last nonlinear slab. Us
Eq. ~9! and the assumption of constante j , Eq. ~5! is written
in the form

e j5e01e2S ky
2UH j

e j
U2

1UH j8

e j
U2D ,

5e01e2S ky
2 uAj u2

ue j u2
1uBj u2D , ~62!

wheree05n0
2 ande252n0n2. Equation~62! is a third-order

polynomial for e j and its root can be found by numeric
@20# or analytical~Appendix B! means.

When the root ofeN is known, wave vectorkN may be
computed using Eq.~8!, i.e.,kj

25e j2ky
2 . We may then con-

struct the TM-polarized characteristic matrix,
n
e-

-

f
e

-
nd

y
ly
in

-

-
.
-

-
g

S Aj

Bj
D 5S 1 i e j 11h

ik j 11
2 h/e j 11 1 D S Aj 11

Bj 11
D , ~63!

whereh is the slab thickness. AmplitudesAN21 and BN21
are obtained using Eq.~63!.

This procedure, Eqs.~62! and ~63!, is repeated for each
nonlinear layerj. Finally the incident and the reflected am
plitudes,Ai and Bi , are determined at the boundary of th
front linear layer and the first nonlinear slab. The p
uBi /Ai u2 versusn2uAi u2 uniquely illustrates the intensity re
flected off the nonlinear structure as a function of the inp
wave intensity.

V. NUMERICAL RESULTS

We investigate nonlinear wave reflection in a three-la
structure, Fig. 1 withn95n8. These types of systems hav
important applications in modern optoelectronics, for e
ample, as waveguides and nonlinear mirrors@13#. We verify
the validity of the perturbative solutions of the canonic
theory by comparing them to the exact nonlinear thin-la
results.

A. TE polarization

In the first numerical example the refractive indices of t
media are takenn851.45 andn051.6 ~for illustrative pur-
poses!. An incident plane wave of wavelengthl51.06
31026 m propagates perpendicularly to the structureu50.
The thickness of the nonlinear middle layer is chosen so
in the linear case@n250, see Eq.~2!# all light passes the
structured'2.2l. The parameter that is varied during th
computation is the nonlinear coefficientn2. The reflected
intensities in the two different nonlinear theories are illu
trated in Fig. 3 as a function ofn2uAi u2, whereuAi u2 is the
incident-wave intensity. The solid line represents the anal
cal formulas of the canonical perturbation theory, Eqs.~37!,
while the dots are the corresponding exact numerical res
of the nonlinear thin-layer theory. In the latter method, o
typically needs about 105 thin layers per wavelength. Figur

FIG. 3. Scattered intensity for the exact theory~dots! and the
perturbative result~solid line!, when the incident field is TE polar
ized, n851.45, n051.6, andd'2.2l. The incident and the re-
flected intensities are denoted byuAi u2 and uBi u2, respectively.
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3 shows that the perturbative results coincide with the ex
numerical results. We also note thatn2uAi u2 is a dimension-
less quantity and that for physical systemsn2uEu2!1. This
condition fixes the upper limit of the horizontal scale in F
3.

When the nonlinear coefficientn250, there is no reflec-
tion and the solution to Maxwell’s equations in the midd
layer can be expressed with two counterpropagating p
waves. The corresponding optical intensity then is a perio
function of indexn0. When the nonlinearity is added,n2
changes the period of oscillations according to Eq.~37a!.
The fields fall off from exact resonance and the scatte
intensity increases~see Fig. 3!. In our numerical example fo
nonzeron2 the relative amount of the reflected light is qui
small, less than 1025. The small value of scattering is en
tirely due to the specific system parameters used in the c
putation.

Next we change the nonlinear layer thickness tod'31l,
but otherwise retain the same system parameters as be
The results of the reflection calculations using the two n
linear theories are now shown in Fig. 4. The solid line a
dots are the perturbative and exact results, respectively.
results of both nonlinear methods again match in details
general, the scattered intensity increases when the nonli
layer becomes thicker, which is due to the longer spa
regime of nonlinear interaction. The analytical explanati
which can be seen from Eq.~37a!, is that the ‘‘nonlinear
intensity’’ oscillates with a different period as compared
the corresponding linear intensity, and the differences
come larger when the distance increases. We may fur
deduce that if the interaction region is sufficiently long a
the refractive indices are properly chosen, the nonlinear fi
may oscillate an extra cycle causing a bistable effect in
scattered fields.

Finally, we change the index of refraction ton053.6 and
choose thicknessd'2.1l for the nonlinear layer. The corre
sponding scattering results are given in Fig. 5. The sys
parameters are comparable with those used in Fig. 3. W
the index jump between the linear and nonlinear media
comes large, more light is reflected by the layered struct
But the perturbative analytical solution, Eq.~37!, again gives

FIG. 4. Scattered intensity. The thickness of the nonlinear la
is d'31l, but otherwise the parameters and illustrations are a
Fig. 3.
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a very accurate estimate for the field within the nonline
medium.

We conclude that while nonlinearity influences the sc
tered intensities, for TE waves the first-order perturbat
analytical solution to the nonlinear fields, Eq.~37!, already is
in an excellent agreement with the exact theory. The ac
racy of the result is independent of the index and layer thi
ness of the nonlinear medium. Hence the analytical per
bative formulas can reliably be used for the evaluation
wave reflection and propagation in nonlinear layered
vices. A significant advantage of the canonical theory o
the thin-layer theory relates to the computation time. T
calculation of a thin-layer problem typically takes seve
minutes of CPU time on a conventional PC, whereas
perturbative result is obtained immediately.

B. TM polarization

We now perform a similar scattering analysis for fields
TM polarization. The first-order analytical expressions a
given by Eq. ~58!, together with Eqs.~26! and ~27!. The
system parameters are taken as follows:n851.45, n051.6,
l51.0631026 m, u56°, andd'2.2l. The scattered inten
sities are illustrated in Fig. 6. The solid line corresponds t
perturbative solution and the dots are obtained by using
TM-polarized nonlinear thin-layer theory. As in the case
TE polarization, the reflected intensity vanishes in the lin
limit and it increases whenn2 is varied.

The two nonlinear theories deviate from each other wh
the nonlinearity is sufficiently large. There are many reas
for this small diversion. The angle of incidence is relative
large, u56°, which givesky

2'0.023. So we have reache
the limit of ky

2 being small, as was assumed in the derivat
of perturbative results in Sec. III B. Assumption~50! and
boundary conditions~48! and ~49! are slightly violated, but
these approximations are still quite reasonable for smallu. In
addition, the higher-order corrections in the expansion
perturbation may also alter the result. But clearly the pert
bative analytical solution, Eq.~58!, provides a useful, tan
gible expression that incorporates the nonlinear effects c
acterizing TM polarization. Changes in the index or lay

r
in

FIG. 5. Scattered intensity. The index of the middle layer
n053.6 andd'2.1l. Parametern8, the dots, and the line are as i
Fig. 3.
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thickness of the nonlinear medium give results that
graphically very similar to those in Fig. 6.

Hence the simulation results show that the first-order p
turbative analytical expression for the electric field in T
polarization, Eqs.~26!, ~27!, and~58!, is not quite as accurat
as the corresponding formula for a TE-polarized wave,
still in most cases it gives a good estimate for the T
polarized field in a nonlinear medium.

VI. CONCLUSIONS

We have investigated a three-layered structure, in whic
nonlinear Kerr medium is sandwiched by two linear med
The incident light is either TE or TM polarized. Similar sy
tems have many applications, e.g., in contemporary optoe
tronic devices. Especially, we studied the nonlinear wa
reflection in layered structures. We used two different me
ods; a perturbation theory of classical mechanics and an
act nonlinear thin-layer theory. Our analytical and numeri
results show that a weak nonlinearity changes the perio
oscillation of the field within a nonlinear layer. This ha
many consequences. For instance, by using a suitable
linear medium one can tune an optical system on and
resonance. If the indices of refraction and the thickness
the nonlinear medium are properly chosen, a bistable ou
is possible. Our analysis is not restricted to a sample of th
media only, but it can readily be extended to multi-layer
structures.

We used Hamilton’s canonical theory to solve the nonl
ear field equations perturbatively. This is manifestly a n
approach to apply classical mechanics in optics. With
help of the Hamilton-Jacobi theory the electromagnetic fie
of a linear system are expressed with constant canonical
ables. The nonlinearity is treated as a small perturbation
modifies the canonical invariants. The ‘‘optical Ham
tonian’’ includes a term 1/«2, which makes it generally in-
teresting, because such Hamiltonians do not have a cou
part in customary systems of classical mechanics.
perturbative approaches the convergence is not always g
anteed. Hence we compared the perturbative results to
exact nonlinear thin-layer theory. We showed that alrea

FIG. 6. Scattered intensity for the exact theory~dots! and the
perturbative result~solid line!, when the incident field is TM polar-
ized,u56°, n051.6, andd'2.2l.
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the first-order correction by perturbation gives very prec
solutions for the nonlinear fields. The method is more
rectly applicable to fields in TE polarization, but it also giv
information about the TM polarized waves. We note that
latter case involves an exact quadrature solution of the n
linear field in TM polarization. Our perturbative approac
has many advantages over other techniques; the nonli
solutions have an analytical form, they are accurate,
readily implemented on a computer.
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APPENDIX A: QUADRATURE SOLUTION

In this Appendix the TM-polarized Maxwell equation~8!
with generalized permittivity

e5e01e2f ~ uEu2! ~A1!

is exactly solved with quadratures. Heref (uEu2) is some real
function of the field intensity. The formalism is similar t
that in Ref.@21#, but now the full phase dependence is al
taken into account.

It is assumed that the nonlinear medium is nonabsorb
i.e., e0 is real. The effective permittivitye is then also a rea
function. The magnetic field is set as

H~z!5h~z!eif(z), ~A2!

whereh(z) andf(z) are real functions. On substituting Eq
~A2! into Eq.~8!, two equations are obtained from the imag
nary and real parts separately, viz.,

2f8h8e1f9he2f8he850, ~A3a!

S h8

e D 8
2

f82h

e
5S ky

2

e
21Dh. ~A3b!

Equation~A3a! is integrated with respect toz,

f8h2

e
5C15const, ~A4!

after which it is inserted into Eq.~A3b!,

S h8

e D 8
2

C1
2e

h3
5S ky

2

e
21Dh. ~A5!

By using Eq.~A4!, Eq. ~9! becomes

uEu25ky
2 h2

e2
1

h821~f8h!2

e2
,

5ky
2 h2

e2
1

h82

e2
1

C1
2

h2
. ~A6!

Let I (e2e0) be an inverse function ofe2f (uEu2); it is as-
sumed that this inverse exists. Then Eq.~A1! with Eq. ~A6!
can be written as
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S h8

e D 2

5I ~e2e0!2ky
2S h

e D 2

2S C1

h D 2

. ~A7!

Equation~A7! is differentiated with respect toz,

2
h8

e S h8

e D 8
5I 822ky

2 h

e3
~eh82e8h!1

2C1
2h8

h3
, ~A8!

after which Eqs.~A5! and ~A8! are combined resulting in

2
hh8

e S ky
2

e
21D 5I 822ky

2 h

e3
~eh82e8h!. ~A9!

When Eq.~A9! is multiplied by e, it can be rewritten in a
relatively simple form

F S 2ky
22e

e Dh2G85eI 8. ~A10!

This is readily integrated overz,

h25
e

2ky
22e

@eI ~e2e0!2J~e2e0!1C2#, ~A11!

where

J~e2e0!5E e8I ~e2e0!dz, ~A12!

andC2 is an integration constant.
Finally, by using Eq.~A7! the exact solution to the TM

polarized Maxwell equation, Eq.~8!, is expressed as

h25
e

2ky
22e

@eI ~e2e0!2J~e2e0!1C2#, ~A13a!

h825e2I ~e2e0!2ky
2h22

C1
2e2

h2
. ~A13b!

The phase factorf of the magnetic field is determined from
Eq. ~A4!. In this analysis we have presumed thate2Þ0 and
e2f (uEu2) is invertible, but otherwise the solution is gener
It is not restricted to any specific nonlinear medium;e can be
an arbitrary real function of the field intensity.

If we further specify the nonlinear medium to conta
only Kerr-type nonlinearities, then

e5e01e2uEu2 ~A14!

and
,

.

I 5
e2e0

e2
, J5

~e2e0!2

2e2
, ~A15!

where e2 is related to the Kerr coefficient. We have n
introduced the domain of the nonlinear equations. Hence
solution given by Eq.~A13! has two constantsC1 and C2
that are determined by the boundary conditions.

APPENDIX B: THIRD-ORDER ROOT

When the nonlinear medium is nonabsorbing or abso
tion is weak, the index of refraction is uniquely determin
for TM polarization, i.e., the third-order polynomial in Eq
~62! has only one real root that has a physical meaning. T
general form of Eq.~62! is

e32D2e21D1e2D050, ~B1!

where D1 , D2, and D3 are real and positive coefficients
Following the notations of Ref.@22#, the quantity

q31r 25
1

108
~27D0

214D1
3218D0D1D22D1

2D2
214D0D2

3!,

~B2!

with definitions

q5
1

3
D12

1

9
D2

2 , ~B3!

r 5
1

6
~3D02D1D2!1

1

27
D2

3 , ~B4!

determines the number of real roots of Eq.~B1!. If D150
~no absorption!, expression~B2! is always positive and Eq
~B1! has one real root and a pair of complex conjugate ro
If D1 is a small positive number~weak absorption!, the root
remains unique. The algebraic expression of this posi
root is

e5
1

6
$2D2122/3@~27D029D1D212D2

3

23A3A27D0
214D1

3218D0D1D22D1
2D2

214D0D2
3!1/3

1~27D029D1D212D2
313A3

3A27D0
214D1

3218D0D1D22D1
2D2

214D0D2
3!1/3#%.

~B5!

The other two roots of Eq.~62! have imaginary parts and
hence they do not have a physical significance.
ser
-

c-
@1# R. W. Boyd, Nonlinear Optics ~Academic Press, London
1982!.

@2# M. Lakshmanan, Int. J. Bifurcation Chaos7, 2035~1997!.
@3# H. M. Gibbs,Optical Bistability: Controlling Light With Light

~Academic Press, New York, 1985!.
@4# F. Kh. Abdullaev, Phys. Rep.179, 1 ~1989!; F. Abdullaev,
Theory of Solitons in Inhomogeneous Media~Wiley, Chiches-
ter, UK, 1994!.

@5# H. A. Haus and W. S. Wong, Rev. Mod. Phys.68, 423~1996!.
@6# I. Broser and J. Gutowski, Appl. Phys. B: Photophys. La

Chem.46, 1 ~1988!; C. H. L. Goodman, Semicond. Sci. Tech
nol. 6, 725 ~1991!.

@7# P. Martinot, A. Koster, and S. Laval, IEEE J. Quantum Ele



l.

c.

,

s

et-
-

PRE 61 7109CANONICAL PERTURBATIVE APPROACH TO . . .
tron. QE-21, 1140 ~1985!; P. Dannberg and E. Broese, App
Opt. 27, 1612~1988!.

@8# J. H. Marburger and F. S. Felber, Phys. Rev. A17, 335~1978!;
W. Chen and D. L. Mills, Phys. Rev. B36, 6269~1987!.

@9# A. E. Kaplan, Pis’ma Zh. E´ksp. Teor. Fiz.24, 132~1976! @Sov.
Phys. JETP Lett.24, 114 ~1976!#; G. M. Wysin, H. J. Simon,
and R. T. Deck, Opt. Lett.6, 30 ~1981!.

@10# S. D. Gupta and G. S. Agarwal, J. Opt. Soc. Am. B3, 236
~1986!; J. Jose and S. D. Gupta, Opt. Commun.145, 220
~1998!.

@11# K. A. Gorshkov, L. A. Ostrovskii, and E. N. Pelinovsky, Pro
IEEE 62, 1511~1974!; K. A. Gorshkov and L. A. Ostrovskii,
Physica D3, 428 ~1981!.

@12# Y. S. Kivshar and B. A. Malomed, Rev. Mod. Phys.61, 763
~1989!.

@13# S. D. Gupta, in Progress in Optics, edited by E. Wolf
~Elsevier, Amsterdam, 1998!, Vol. 38, p. 1.
@14# H. Goldstein,Classical Mechanics~Addison-Wesley, Reading
MA, 1980!.

@15# W. Dittrich and M. Reuter,Classical and Quantum Dynamic
~Springer, Berlin, 1996!.

@16# T. A. Laine and A. T. Friberg, Appl. Phys. Lett.74, 3248
~1999!.

@17# J. Ximen, Adv. Electron. Electron Phys.81, 231 ~1991!.
@18# D. Anderson, Phys. Rev. A27, 3135~1983!.
@19# M. Born and E. Wolf,Principles of Optics~Pergamon, Oxford,

UK, 1970!.
@20# W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. V

terling,Numerical Recipes~Cambridge University Press, Cam
bridge, 1987!.

@21# K. M. Leung, Phys. Rev. B32, 5093~1985!.
@22# Handbook of Mathematical Functions, edited by M.

Abramowitz and I. A. Stegun~Dover, New York, 1972!.


